среда, 23 сентября 2015 г.

Координатная прямая (алгебра 7 класс)

Видеоурок по теме "Координатная прямая"

Координатная прямая даёт возможность свободно переходить с алгебраического языка на геометрический и обратно.
 
1. Пусть на координатной прямой отмечена точка a.
Отметим (закрасим) на координатной прямой все точки, расположенные правее точки a.
 
Это множество точек (чисел) называют открытым лучом и обозначают (a;+).
Оно характеризуется неравенством x>a, где x - любая точка открытого луча.
Если точку a присоединить к открытому лучу, то получится луч.
Луч обозначаем [a;+) и характеризуем неравенством xa.
 
 
2. Если отметим (закрасим) на координатной прямой все точки, расположенные левее точки a,
то множество точек (чисел) также называют открытым лучом и обозначают (;a) и характеризуют неравенством x<a.
Если точку a присоединить к открытому лучу, то также получится луч.
Луч обозначаем (;a] и и характеризуем неравенством xa.
 
 
3. Отметим на координатной прямой точки a и b, причём a<b (т.е. точка a расположена на прямой левее точки b).
 
Полученное множество точек (чисел) называют интервалом и обозначают (a;b) и характеризуют двойным неравенством a<x<b.
Если к интервалу (a;b) добавить его концы
,
то получится отрезок [a;b], который характеризуется нестрогим двойным неравенством axb.
 
 
4. Если к интервалу (a;b) добавить один из его концов
 
 (справа или слева),
то получится полуинтервалкоторый обозначают [a;b) или (a;b] и характеризуют с помощью двойных неравенств: ax<b и a<xb.
 
Итак, введены пять новых терминов: луч, открытый луч, интервал, отрезок, полуинтервал. Общее их название -числовые промежутки.
Сама координатная прямая также числовой промежуток, который обозначают (;+).

Комментариев нет:

Отправить комментарий